
Investigations on the differential

equation for the hypgeometric series*

Carl Gustav Jacob Jacobi

§. 1

It has been known since Euler that the definite integral

y =

1∫
0

Vdu,

with

V = uβ−1(1 − u)γ−β−1(1 − xu)−α,

satisfies the differential equation

(1) x(1 − x)y′′ + (γ − (α + β + 1)x)y′ − αβy = 0.

To demonstrate this, following Euler’s procedure (Institutiones calculi integralis,
Vol. II, Sect. I, Chap. X, Problem 130), one just has to introduce the integral∫

Vdu for y on the left–hand side of (1), to form y′ and y′′, i.e. dy
dx and d2y

dx2 ,
by differentiation under the integral sign, and finally simplify the resulting

*Original Title: “Untersuchungen über die Differentialgleichung der hypergeometrischen
Reihen", published in Borchardt Journal für die reine und angewandte Mathematik, Band 56: pp.
149–165. Reprint in: G.G.J. Jacobi’s gesammelte Werke – Volume 6, pp. 185 – 202 translated
by: Alexander Aycock for the “Euler-Kreis Mainz".
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expression. Then, one will not obtain 0 on the right–hand side initially, but
the expression1

−αuβ(1 − u)γ−β(1 − xu)−α−1 = −α
u(1 − u)
1 − xu

V.

Since the latter vanishes for u = 0 and u = 1, while assuming β and γ − β

to be positive, of course, the definite integral y =
1∫

0
Vdu, in the case it is

meaningful, will integrate (1).

It has been ignored in the past that before–mentioned expression also va-
nishes for u = ±∞, provided γ − α − 1 is negative, such that, aside from the
boundaries 0 and 1, the boundaries 0 and −∞, 1 and ∞ exhibit integrals of
(1) as well. Taking this into account one arrives at the following result:

“y =
h∫

g
Vdu satisfies equation (1), if g and h denote two of the values 0, 1,

±∞ and we have [
u(1 − u)
1 − xu

V
]h

g
= 0;

provided the integral is meaningful, of course."

We use the familiar notation, according to which [ f (u)]hg represents the
difference f (h)− f (g).

Looking at the composition of the expression V, it was obvious to add the
value 1

x to the values of the limits of the integral
∫

Vdu just considered, the

1Following Euler, one might express this by saying that the differential quotient, taken with
respect to u,

−α
d

du

[
u(1 − u)
1 − xu

V
]

,

can be represented in the form

A
d2V
dx2 + B

dV
dx

+ CV,

where A, B, C are the quantities x(1 − x), γ − (α + β + 1)x, −αβ independent from u that
occur in equation (1).
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first of which make the quantities u and 1 − u equal to zero, since for 1
x the

term 1 − xu vanishes. By having substituted y =

ε
x∫

g
Vdu in the left–hand side

of (1) at first, where ε denotes a constant, the following simplification yielded

−(γ − β − 1)εβ(1 − ε)1−αx1−γ(x − ε)γ−β−2 + αgβ(1 − g)γ−β(1 − xg)−α−1

and hence one was able conclude for ε = 1 that

y =

1
x∫

g

Vdu

satisfies equation (1) as well, if

u(1 − u)
1 − xu

V

vanishes for u = g and 1 − α is positive; here, we assume that the integral has
a definite value.

Therefore, one has six definite integrals and, as it is easily demonstrated,
as many different solutions to equation (1) (i.e. such no two of which have a
constant coefficient). By assuming, as we will also do in the following, x to be
positive, to which case the one for negative x is easily reduced, we present
these solutions alongside the conditions for them to satisfy equation (1):

3



1) if β and γ − β are positive, y =
1∫

0
Vdu,

2) ” β ” α + 1 − γ ” y =
−∞∫
0

Vdu,

3) ” γ − β ” α + 1 − γ ” y =
∞∫
1

Vdu,

4) ” β ” 1 − α ” y =

1
x∫

0
Vdu,

5) ” α + 1 − γ ” 1 − α ” y =
∞∫
1
x

Vdu,

6) ” γ − β ” 1 − α ” y =

1
x∫

1
Vdu.

To understand the meaning of these integrals more clearly, one might ex-
press them in terms of hypergeometric series. For, it is well–known that
1∫

0
uλ(1− u)µ(1− au)νdu, aside from a constant factor, is equal to the hypergeo-

metric series, which, following Gauß, is denoted by F(−ν, λ + 1, λ + µ + 2, a).
Furthermore, it is easily seen that the limits of the six integrals can be transfor-
med into 0 and 1 by a suitable transformation without the function under the
integral losing its form up(1− u)q(1− bu)rdu. I list the six solutions, expressed
in terms of hypergeometric series, at which one arrives this way, together with
the substitutions used in the process.
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1) F (α, β, γ, x) , Substitution u = v,

2) x−αF
(

α, α + 1 − γ, α + β + 1 − γ,
x − 1

x

)
, ” u =

v − 1
v

,

3) x−αF
(

α, α + 1 − γ, α + 1 − β,
1
x

)
, ” u =

1
v

,

4) x−βF
(

β, β + 1 − γ, β + 1 − α,
1
x

)
, ” u =

v
x

,

5) x1−γF (α + 1 − γ, β + 1 − γ, 2 − γ, x) , ” u =
1

xv
,

6) xα−γ(1 − x)γ−α−βF
(

γ − α, 1 − α, γ + 1 − α − β,
x − 1

x

)
, ” u =

1
x + (1 − x)v

,

To each of these solutions one finds three equal, only formally different, ones,
if one, already having transformed the limits of the integrals to 0 and 1 by
the above substitutions, additionally uses three new substitutions leaving the
boundaries unchanged, namely:

u = 1 − v; u =
v

1 − x + vx
; u =

1 − v
1 − vx

.

Applying them, Vdu transforms into

(1 − x)−αvγ−β−1(1 − v)β−1
(

1 − xv
x − 1

)−α

dv,

(1 − x)−βvβ−1(1 − v)γ−β−1
(

1 − xv
x − 1

)α−γ

dv,

(1 − x)γ−α−βvγ−β−1(1 − v)β(1 − vx)α−γdv,

respectively; thus, from F(α, β, γ, x) they lead to
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(1 − x)−αF
(

α, γ − β, γ,
x

x − 1

)
,

(1 − x)−βF
(

γ − α, β, γ,
x

x − 1

)
,

(1 − x)γ−α−βF (γ − α, γ − α, γ, x) .

If we now collect the integrals transformed into hypergeometric series, we
obtain six classes, each of which contains four equivalent solutions:

CLASS I

1) F(α, β, γ, x)

2) (1 − x)γ−α−βF(γ − α, γ − β, γ, x)

3) (1 − x)−αF
(

α, γ − β, γ,
x

x − 1

)
4) (1 − x)−βF

(
β, γ − α, γ,

x
x − 1

)
.

CLASS II

1) x−αF
(

α, α + 1 − γ, α + β + 1 − γ,
x − 1

x

)
,

2) x−βF
(

β, β + 1 − γ, α + β + 1 − γ,
x − 1

x

)
,

3) F (α, β, α + β + 1, 1 − x) ,

4) x−1−γF (α + 1 − γ, β + 1 − γ, α + β + 1 − γ, 1 − x) .
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CLASS III

1) x−α

(
α, α + 1 − γ, α + 1 − β,

1
x

)
2) xβ−γ(1 − x)γ−α−βF

(
1 − β, γ − β, α + 1 − β,

1
x

)
,

3) (1 − x)−αF
(

α, γ − β, α + 1 − β,
1

1 − x

)
4) x1−γ(1 − x)γ−α−1

(
α + 1 − γ, 1 − β, α + 1 − β,

1
1 − x

)
.

CLASS IV

1) x−βF
(

β, β + 1 − γ, β + 1 − α,
1
x

)
,

2) xα−γ(1 − x)γ−α−βF
(

1 − α, γ − α, β + 1 − α,
1
x

)
,

3) (1 − x)−βF
(

β, γ − α, β + 1 − α,
1

1 − x

)
,

4) x1−γ(1 − x)γ−β−1F
(

β + 1 − γ, 1 − α, β + 1 − α,
1

1 − x

)
.

CLASS V

1) x1−γF (α + 1 − γ, β + 1 − γ, 2 − γ, x) ,

2) x1−γ(1 − x)γ−α−βF (1 − α, 1 − β, 2 − γ, x) ,

3) x1−γ(1 − x)γ−α−1F
(

α + 1 − γ, 1 − β, 2 − γ,
x

x − 1

)
,

4) x1−γ(1 − x)γ−β−1F
(

β + 1 − γ, 1 − α, 2 − γ,
x

x − 1

)
.
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CLASS VI

1) xα−γ(1 − x)γ−α−βF
(

γ − α, 1 − α, γ + 1 − α − β,
x − 1

x

)
,

2) xβ−γ(1 − x)γ−α−βF
(

γ − β, 1 − β, γ + 1 − α − β,
x − 1

x

)
,

3) (1 − x)γ−α−βF(γ − α, γ − β, γ + 1 − α − β, 1 − x),

4) x1−γ(1 − x)γ−α−βF(1 − α, 1 − β, γ + 1 − α − β, 1 − x).

These 24 series are the same that Kummer listed in §. 8 of his article on the
hypergeometric series in volume 15 of Crelle’s journal, about the meaning
of which one will find more detailed explanations in the before–mentioned
article. The investigation at hand hence presents the new result that the definite
integrals, which are equal to those series, are all obtained from integration of
the same expression between two of of the limits 0, 1, ±∞, 1

x .

§. 2

Another entirely different kind of relations between the integrals of equation
(1) is obtained by generalizing the investigations that Gauß carries out in his
work on mechanical quadratures. There (Para. 8) a function T of degree n + 1

occurs, whose connection with
1∫

0

Tdt
t−a offered an opportunity for discovery of

the following theorem:

“If y = f (x) is an integral of differential equation (1), then

(2) z =

h∫
g

tγ−1(1 − t)α+β−γ

(t − x)ρ
f (t)dt =

h∫
W f (t)dt

will be an integral of the differential equation

(3) x(1 − x)z′′ + (ρ + 1 − γ − (2ρ + 1 − α − β)x)z′ − (ρ − α)(ρ − β)z = 0,

provided that g as well as h has one of the values 0, 1, ±∞, and
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(2a)

[
tγ(1 − t)α+β+1−γ

(t − x)ρ

(
f ′(t) + ρ

f (t)
t − x

)]h

g
= 0.

One might even put h = x; but in this case, the expression in parentheses has
to vanish for t = g and 1 − ρ must be positive."

In order to prove this theorem, one may assume that f (t) satisfies the
differential equation

t(1 − t) f ′′(t) + (γ − (α + β + 1)t) f ′(t) = αβ f (t),

which, if multiplied by tγ−1(1 − t)α+β−γ, has the form

αβtγ−1(1 − t)α+β−γ f (t) =
d(tγ(1 − t)α+β+1−γ) f ′(t)

dt
.

The latter, substituted for the integral on the right–hand side of equation (2),
after an integration by parts, yields

αβz =

[
tγ(1 − t)α+β+1−γ f ′(t)

(t − x)ρ

]h

g
+ ρ

h∫
g

tγ(1 − t)α+β+1−γ f ′(t)
(t − x)ρ+1 dt

and, after another integration by parts,

αβz =

[
t(1 − t)W

(
f ′(t) +

ρ f (t)
t − x

)]h

g
− ρ

h∫
g

d
dt

(
t(1 − t)

t − x
W

)
f (t)dt.

Now applying the transformation presented in the remark of §. 1, according
to which, if one sets u = 1

t , u2V = W, we have

−ρ
d
dt

(
t(1 − t)

t − x
W

)
= x(1 − x)

d2W
dx2 + (ρ + 1 − γ − (2ρ + 1 − α − β)x)

dW
dx

− ρ(ρ − α − β)W,

one arrives at the theorem formulated above.

The result contained in the latter can be cast into another form by compari-
son of both solutions F(α, β, γ, x) and x1−γ(1− x)γ−α−βF(1− α, 1− β, 2− γ, x)
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to equation (1), which are contained in expression 1) of class I and expression
2) of class V. For, since F(1 − α, 1 − β, 2 − γ, x) is a solution ζ of

(1a) x(1 − x)ζ ′′ + (2 − γ − (3 − α − β)x)ζ ′ − (1 − α)(1 − β)ζ = 0,

the result of the before–mentioned comparison can be formulated in such a
way that a solution ζ to (1a), if multiplied by x1−γ(1 − x)γ−α−β, leads to a
solution to (1). If one lets equation (3) take the place of (1a) by increasing α,
β, γ by 1 − ρ, by means of the above theorem it immediately follows that

(4) Z = xρ−γ(1 − x)ρ+γ−α−β−1
h∫

g

tγ−1(1 − t)α+β−γ

(t − x)ρ
f (t)dt

becomes a solution to that equation, into which (1) is transformed at the same
time, i.e. to

(5) x(1− x)Z′′+(γ+ 1− ρ− (α+ β+ 3− 2ρ)x)Z′+(α+ 1− ρ)(β+ 1− ρ)Z = 0.

Specializing ρ = 1 here, (5) becomes identical to (1), and from an integral
f (x) of equation (1) one obtains the additional one

(6) x1−γ(1 − x)γ−α−β

h∫
g

tγ−1(1 − t)α+β−γ

t − x
f (t)dt.

§. 3

The last formula provides us with an especially interesting result, if f (t) is a fi-
nite series, in other words, a hypergeometric series the first or second element
of which is a negative integer number −n. In the following paragraphs, up to §.
6 inclusively, the properties of those series will be the main topic of discussion.

Differentiating equation (1)

x(1 − x)y′′ + (γ − (α + β + 1)x)y′ − αβy = 0

with respect to x several times, one obtains
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x(1 − x)y′′′ + (γ + 1 − (α + β + 3)x)y′′ − (α + 1)(β + 1)y′ = 0,

x(1 − x)y′′′′ + (γ + 2 − (α + β + 5)x)y′′′ − (α + 2)(β + 2)y′′ = 0,

· · · · · · · · · ·

The result found by (n − 1)–times differentiation, by multiplication by

xγ+n−2(1 − x)α+β−γ+n−1,

is cast into this form:

d{xn(1 − x)n My(n)}
dx

= (α + n − 1)(β + n − 1)xn−1(1 − x)n−1My(n−1),

with

M = xγ−1(1 − x)α+β−γ.

Differentiating this equation (n − 1) times once more, one obtains

dn{xn(1 − x)n My(n)}
dxn = (α+ n− 1)(β+ n− 1)

dn−1{xn−1(1 − x)n−1My(n−1)}
dxn−1

and hence by iterated application for any positive n this yields the equation

dn{xn(1 − x)n My(n)}
dxn = α(α + 1) · · · (α + n − 1) · β(β + 1) · · · (β + n − 1)My,

in which M denotes the same value as above.

If now y is a hypergeometric series of x terminating at the n–th power, i.e.
if one sets β = −n, while α and γ remain arbitrary, one will have

y = F(−n, α, γ, x)

and, by the previous equation,

F(−n, α, γ, x) =
x1−γ(1 − x)γ+n−α

γ(γ + 1) · · · (γ + n − 1)
dn{xγ+n−1(1 − x)α−γ}

dxn ,
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or, setting α + n instead of α,

(7) F(−n, α + n, γ, x) =
x1−γ(1 − x)γ−α

γ(γ + 1) · · · (γ + n − 1)
dn{xγ+n−1(1 − x)α+n−γ}

dxn .

On the one hand this expression shows that each finite hypergeometric series
can be transformed into the elegant form of the right–hand side of (7), on
the other hand it transforms the frequently occurring differential expression
of the right–hand side into an expanded form of a product of powers into a
simple hypergeometric series. For α = γ = 1 one obtains

1
1 · 2 · · · n

dn{xn(1 − x)n}
dxn = F(−n, n + 1, 1, x),

and for x = 1−ξ
2

1
2n · 1 · 2 · · · n

dn(ξ2 − 1)n

dξn = F
(
−n, n + 1, 1,

1 − ξ

2

)
,

i.e. on the left–hand side one finds the well–known function arising from the
expansion of 1√

1−2hξ+h2
according to powers of h. The expression of the latter

on the right–hand side as a series was given by Dirichlet (Crelle’s Journal,
Vol. 17, p. 39). In similar manner, one will obtain an expansion of the n–th

differential quotient dn(1−ξ2)n− 1
2

dξn , which is known to be connected to cos nφ for
the choice ξ = cos φ.

§. 4

Without any difficulty, one will find the generating function of the expressions
given by (7) of the same kind, as it was done in Crelle’s Journal, Vol. 2, p. 224
(p. 22 and 23 of this volume) in the before–mentioned case α = γ = 1 in §. 3.
One might even invoke Lagrange’s formula, according to which

χ(y)
dy
dx

= χ(x) +
h
1

d[ f (x)χ(x)]
dx

+
h2

1 · 2
d2[ f 2(x)χ(x)]

dx2 + · · · ,

if, given x and y, the equation,

y − x = h f (y)
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holds; then, one only needs to set

f (x) = x(1 − x), χ(x) = xγ−1(1 − x)α−γ.

Letting

F(−n, α + n, γ, x) = Xn

and, as above, 2x = 1 − ξ, one obtains

x1−γ(1 − x)γ−α{h − 1 +
√

1 − 2hξ + h2}γ−1{h + 1 −
√

1 − 2hξ + h2}α−γ

(2h)α−1
√

1 − 2hξ + h2

=
∞

∑
n=0

γ(γ + 1) · · · (γ + n − 1)
1 · 2 · · · n

hnXn.

This formula, which did not seem to be recommendable because of its sim-
plicity, has not been investigated any further, aside from a certain special of
it.

§. 5

By means of the binomial theorem, expand

(1 + 2hξ + h2)−c

according to rising powers of h. Equating the series resulting this way to

∞

∑
n=0

hnYn,

it will be

Yn =
2c(2c + 1) · · · (2c + n − 1)

1 · 2 · · · n
F
(
−n, 2c + n,

2c + 1
2

, x
)

,

provided x and ξ are connected as in the previous paragraph, i.e., additionally

Yn = 4n c(c + 1) · · · (c + n − 1)
(2c + n)(2c + n + 1) · · · (2c + 2n − 1)

[x(1 − x)]
1
2 (1−2c)

Π(n)
dn[x(1 − x)]

1
2 (2c+2n−1)

dxn .
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§. 6

By the expressions denoted by Xn in §. 4, provided that γ and α + 1 − γ are
positive, any function φ(x) can only be expanded in one unique way such
that assuming φ(x) = ∑∞

n=0 anXn the constants are completely determined.
For the purpose of demonstrating this theorem, one just has to show that

Jm,n =

1∫
0

XmXnxγ−1(1 − x)α−γdx

vanishes, if the numbers m and n are different from each other. But Xn satisfies
the differential equation

x(1 − x)X′′
n + (γ − (α + 1)x)X′

n = −n(n + α)Xn

such that

−n(n + α)Jm,n =
1∫

0
Xm

d{xγ(1 − x)α+1−γX′
n}

dx
dx

=
1∫

0
Xn

d{xγ(1 − x)α+1−γX′
m}

dx
dx,

i.e. becomes equal to −m(m + α)Jm,n, from which one concludes that Jm,n

vanishes. For m = n the value of the constant is easily calculated, since

n(n + α)Jn,n =

1∫
0

X′
nX′

nxγ(1 − x)α+1−γdx,

furthermore,

(n − 1)(n + α + 1)
1∫

0

X′
nX′

nxγ(1 − x)α+1−γdx =

1∫
0

X′′
n X′′

n xγ+1(1 − x)α+2−γdx

etc. such that for Jn,n one obtains the value

1
α + 2n

Π(n)[Π(γ − 1)]2Π(α + n − γ)

Π(α + n − 1)Π(γ + n − 1)
.
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§. 7

For a second integral of the differential equation, the first of which is Xn, by
means of formula (6) of §. 2 one obtains the value

x1−γ(1 − x)γ−α

h∫
g

tγ−1(1 − t)α−γ

t − x
F(−n, α + n, γ, t)dt,

which for α = γ = 1 becomes the one mentioned at the beginning of §. 2, if
one writes n + 1 instead of n and g = 0, h = 1.

According to §. 3, the above value can also be replaced with

x1−γ(1 − x)γ−α

h∫
g

dn{tγ+n−1(1 − t)α+n−γ}
dtn

dt
t − x

,

thus, if the values γ, α permit an integration by parts, also with

(8) Zn = x1−γ(1 − x)γ−α

h∫
g

tγ+n−1(1 − t)α+n−γ

(t − x)n+1 dt.

The differential equation will then be completely integrated by

aXn + bZn,

a and b denoting arbitrary constants.

§. 8

The results Gauß obtained by comparison of T and
1∫

0

Tdt
t−a for the continued

fraction expansion of the logarithmic series, can be transferred to the parti-
cular hypergeometric series F(α, 1, γ, x) by comparison of Xn and Zn. This
way, almost without any calculation, the results on approximate fractions are
obtained, which were initially found by resolution of linear equations (Crelle’s
Journal, Vol., p. 208 and Vol. 34, p. 297.)
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Let α + 1 − γ and γ, moreover, let x > 1; denoting the value of Xn for x = t
by Tn and setting

−Wn =

1∫
0

tγ−1(1 − t)α−γ Tn − Xn

t − x
dt,

such that Wn is a entire function of degree (n − 1) of x, one immediately has
the equation

Xn

1∫
0

tγ−1(1 − t)α−γ

t − x
dt = Wn +

1∫
0

tγ−1(1 − t)α−γ

t − x
Tndt

and hence, if a and b denote easily computable constants,

a
x

XnF
(

γ, 1, α + 1,
1
x

)
= Wn + b

1∫
0

tγ+n−1(1 − t)α+n−γ

(t − x)n+1 dt.

The integral multiplied by b, if expanded according to decreasing powers of x,
starts with x−n−1 (the degree is −(n + 1)); therefore, we have a function Xn

of degree n, which multiplied by F
(
γ, 1, α + 1, 1

x

)
yields the entire function

xWn and a remainder of degree (−n). It is well–known since Gauß’s work on
mechanical quadratures how this property of the Xn enables to immediately
state the denominators of the continued fraction for F

(
α, 1, γ, 1

x

)
in the way it

results from Gauß’s article on the hypergeometric series (Parag. 13), with the
notation used there, the continued fraction being

x

x −
a

1 −
b

x −
c

1 − etc.

.

For, the denominator Q2n of the (2n)–th approximate value has the form

Q2n = xn + b1xn−1 + b2xn−2 + · · ·+ bn,

the one of the (2n + 1)–th

Q2n+1 = x(xn + c1xn−1 + c2xn−2 + · · ·+ cn),
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if we count x as the first and x − a as the second. Furthermore, Q2n or Q2n+1, if
multiplied by F

(
α, 1, γ, 1

x

)
, has to be equal to an entire function of x, increased

by a remainder of degree −n. Thus, Q2n and Q2n+1 can only differ by the
constant factors of F(−n, γ + n − 1, α, x) and xF(−n, γ + n, α + 1, x); having
determined these factors properly, i.e. in such a way that the highest power of
x get one as factor, this results in

Q2n = xnF
(
−n, 1 − α − n, 2 − γ − 2n,

1
x

)
Q2n+1 = xn+1F

(
−n,−α − n, 1 − γ − 2n,

1
x

)
.

If γ and α + 1 − γ have different signs, this can obviously not alter the results.

§. 9

We now pass on to our last investigation, namely, answering the question,
whether it is possible for any value of the elements to integrate differential
equation (1) completely by simple definite integrals. Without any difficulty
we see that the six definite integrals of §. 1 are not all valid simultaneously.
Not only setting

V = uβ−1(1 − u)γ−β−1(1 − xu)−α,

as previously, but also

W = uα−1(1 − u)γ−α−1(1 − xu)−β,

the following table lists the cases in which
∫

Vdu or
∫

Wdu yield a solution to
(1). The list is constructed with respect to the sings of α, β, γ − α, γ − β and,
in order to reduce the number of cases, β − α is assumed to be non–negative.
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β γ − β α γ − α x > 1 x < 1

1. + + + +
1∫

0
Vdu

2. + + − +
1∫

1
x

Vdu
1
x∫

0
Vdu

1∫
0

Vdu
1
x∫

1
Vdu

3. + − + +
−∞∫
0

Wdu
∞∫
1

Wdu
1∫

0
Wdu

−∞∫
0

Wdu

4. + − + −
−∞∫
0

Vdu
−∞∫
0

Vdu

5. + − − +

1
x∫

0
Vdu

6. + − − −
−∞∫
0

Vdu
1
x∫

0
Vdu

∞∫
1
x

Vdu
−∞∫
0

Vdu

7. − + − +
1∫

1
x

Vdu
1
x∫

1
Vdu

8. − − − +
1∫

1
x

Wdu
∞∫
1

Wdu
1
x∫

0
Wdu

∞∫
1
x

Wdu

9. − − − −
∞∫
1
x

Vdu

Since for the case x > 1 as well as the case x < 1 one has to assign
two different solutions, consulting the table it is quickly understood, when
additional solutions have to be found.

§. 10

In order to find such solutions, one can invoke the theorem formulated in §.
2. For, this theorem gives the relations between the differential equations of
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two hypergeometric series, the elements of which are α, β, γ and ρ − α, ρ − β,
ρ + 1 − γ, such that ρ − α, ρ − β, ρ + 1 − γ go over into

ρ − (ρ − α) = α, ρ − (ρ − β) = β, ρ + 1 − (ρ + 1 − γ) = γ,

respectively. Now taking ρ in such a way that ρ − α is equal to a negative
number −n, an integral of the first differential equation is the finite series

F(−n, α − β − n, α + 1 − γ − n, x) = f (x),

the second differential equation then is differential equation (1) itself; accor-
ding to (2), one hence finds an integral of (1) as the formula

z =

h∫
g

tα−γ−n(1 − t)γ−β−n−1

(t − x)α−n f (t)dt,

or, applying the transformation given in §. 3, the formula

(9) Z =

h∫
g

dn{tα−γ(1 − t)γ−β−1}
dtn (t − x)n−αdt,

provided that for constant g and h[
tα+1−γ−n(1 − t)γ−β−n

(t − x)α−n

(
f ′(t) +

α − n
t − x

f (x)
)]h

g
= 0

and that for h = x the expression in parentheses vanishes for t = g and
n + 1 − α is positive.

This result is also easily verified, and other similar statements are found
with same ease, considering that after integration by parts

tα−γ(1 − t)γ−β−1(t − x)−αdt

remains under the integral on the right–hand side, if this operation is admissi-
ble, of course. But this expression, if integrated between g and h, is a solution
of (1); if, e.g., g and h are equal to 0 and 1, respectively, the integration gives
a solution of the third class. Hence one concludes immediately that, even if
integration by parts is actually not allowed, Z is a solution to (1), if only the
integral has a finite value.
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§. 11

We can now complete our table from §. 9.

1) In the first case, there are only two integrals missing, if x > 1; Obviously,
the following ones can be added:

∞∫
x

dn{tβ−γ(1 − t)γ−α−1}
dtn (t − x)n−βdt,

∞∫
x

dn{tα−γ(1 − t)γ−β−1}
dtn (t − x)n−αdt,

if n is assumed so large that n + 1 − β or n + 1 − α are positive, respectively.
If one is allowed to take n = 0, these integrals are of the III. and IV. class,
respectively.

If x < 1, one integral is missing, which is assumed to be equal to (1− x)−βζ,
with ζ satisfying differential equation (1), if in it we change α, β, γ to β, γ − α,
β + 1 − α, 1

1−x . Confer form 3) of class IV. Hence it follows that

(1 − x)−β

∞∫
1

1−x

dn{tγ−β−1(1 − t)−α}
dtn

(
t − 1

1 − x

)α+n−γ

dt

can be considered as the missing integral, if α + n + 1 − γ is positive. For
n = 0 an integral of class II. is obtained.

2) In the fourth case, if x > 1, one can obviously take

∞∫
x

dn{tβ−γ(1 − t)γ−α−1}
dtn (t − x)n−βdt,

as a solution, under the constraint that n + 1 − β is positive.

If x < 1, taking into account of form 1) of class II, let the missing integral
be equal to x−αζ, where ζ satisfies the differential equation, into which (1)
is transformed, if for α, β, γ, x one writes α, α + 1 − γ, α + β + 1 − γ, x−1

x ,
respectively. Hence one obtains
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x−α

−∞∫
x−1

x

dn{tγ−β−1(1 − t)β−1}
dtn

(
t − x − 1

x

)n−α

dt

as solution, under the condition that n + 1 − α is positive. For n = 0 one
obtains integrals from class III and IV.

3) In the fifth case one has to find an integral, if x > 1. Considering the
fourth integral of class I, put z = (1 − x)−βζ and, as above, write γ − α, β, γ,

x
x−1 instead of α, β, γ, x; this way one finds

(1 − x)−β

∞∫
x

x−1

dn{tβ−1(1 − t)α−1}
dtn

(
t − x

x − 1

)n−β

dt,

provided that n + 1 − β is positive.

If x < 1, one obtains two integrals

(1 − x)−β

∞∫
x

x−1

dn{tβ−γ(1 − t)α−1}
dtn

(
t − x

x − 1

)n−β

dt

x−β

∞∫
1
x

dn{tα−γ(1 − t)−α}
dtn

(
t − 1

x

)γ+n−β+1

dt

under the condition that n + 1 − β and γ + n − β are positive, respectively.
For n = 0 the integrals turn into those of class VI and I.

4) In the seventh case, for x > 1 one finds

x1−γ(1 − x)γ−α−β

∞∫
x

dn{tγ−β−1(1 − t)α−γ}
dtn (t − x)n+β−1 dt

and for x < 1

xα−γ(1 − x)γ−α−β

−∞∫
x−1

x

dn{tβ−γ(1 − t)−β}
dtn

(
t − x − 1

x

)n+α−1

dt
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under the constraint that n + β and n + α are positive, respectively. For n = 0,
integrals of class IV and I arise.

5) In the ninth case, for x > 1 one obtains

x1−γ

∞∫
x

dn{tβ−1(1 − t)−α}
dtn (t − x)γ+n−β−1 dt

and

x1−γ

∞∫
x

dn{tα−1(1 − t)−β}
dtn (t − x)γ+n−α−1 dt,

finally, for x < 1,

x1−γ(1 − x)γ−β−1
∞∫

1
1−x

dn{t−β(1 − t)γ−α−1}
dtn

(
t − 1

1 − x

)n+α−1

dt.

The conditions are that γ+ n− β, γ+ n− α and n+ α are positive, respectively;
for n = 0 integrals of class III, IV and II arise.
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